PERT/CPM

1. Introdução

As técnicas denominadas PERT e CPM foram independentemente desenvolvidas para o Planejamento e Controle de Projetos em torno de 1950, porém a grande semelhança entre estas fez com que o termo PERT/CPM seja utilizado corriqueiramente como apenas uma técnica.

Os termos PERT e CPM são acrônimos de *Program Evaluation and Review Technique* (PERT) e *Critical Path Method* (CPM).

Exemplos de Projetos que podem utilizar PERT/CPM:

- 1. Construção de uma planta
- 2. Pesquisa e desenvolvimento de um produto
- 3. Produção de filmes
- 4. Construção de navios
- 5. Instalação de um sistema de informações
- 6. Condução de campanhas publicitárias, entre outras.

PERT e CPM utilizam principalmente os conceitos de Redes (grafos) para planejar e visualizar a coordenação das atividades do projeto.

Um exemplo clássico de aplicação de PERT/CPM é o planejamento e gerenciamento da construção civil.

Exemplo (Hiller/Lieberman, pg 468)

Suponha que uma empreiteira ganhou uma concorrência de \$5,4 milhões para construir uma planta industrial. O contrato inclui:

- Uma penalidade de \$300.000,00 se a empreiteira não completar a construção em 47 semanas.
- Um bônus de \$150.000,00 se a empreiteira completar a construção em 40 semanas.

De acordo com a experiência da empreiteira, a seguinte lista foi elaborada para este projeto:

Tabela 1 - Atividades, Atividades Precedentes e Duração Estimada						
Atividade	Descrição Atividades Duração Estimad					
	<u>-</u>	Precedentes	(semanas)			
A	Escavação	-	2			
В	Fundação	A	4			
С	Paredes	В	10			

D	Telhado	С	6
Е	Encanamento Exterior	С	4
F	Encanamento Interior	Е	5
G	Muros	D	7
Н	Pintura Exterior	E,G	9
I	Instalação Elétrica	С	7
J	Divisórias	F,I	8
K	Piso	J	4
L	Pintura Interior	J	5
M	Acabamento Exterior	Н	2
N	Acabamento Interior	K,L	6

A duração para a execução da obra é 79 semanas se cada atividade for realizada uma por vez. No entanto, existem atividades que podem ser realizadas simultaneamente com outras atividades, podendo com isso, reduzir a duração da execução da obra.

2. Construção da Rede

A rede pode ser construída utilizando os arcos para representar as atividades e os nós para separar as atividades de suas atividades precedentes, porém utilizar os nós para representar as atividades e os arcos para representar as relações de precedência parece ser mais intuitivo. A figura abaixo ilustra a rede para o exemplo dado:

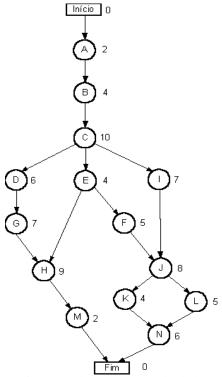


Fig. 1 - Rede para o exemplo dado.

A partir da lista de atividades e das relações de precedência, a rede pode ser facilmente construída. Para isto, dado uma atividade (nó), basta procurar na lista quais atividades são suas atividades precedentes. Por exemplo, na rede da figura 1, a atividade J possui as atividades F e I como precedentes, as quais devem ser conectadas através de arcos orientados (setas), indicando assim, a precedência.

Através da análise da rede, várias informações podem ser obtidas, entre elas, as respostas para duas perguntas cruciais para o planejamento do projeto:

- 1) Qual o tempo total requerido para completar o projeto se nenhum atraso ocorrer?
- 2) Quais as atividades que não podem sofrer atrasos para que o projeto seja executado sem atraso ("Atividades Gargalos") ?

2.1 Caminho Crítico

Um caminho através de uma rede é uma rota seguindo os arcos a partir do nó INÍCIO até o nó FIM. O comprimento de um caminho é a soma das durações das atividades sobre o caminho.

Na rede da figura 1 existem 6 caminhos, que são dados na tabela abaixo, juntamente com seus respectivos comprimentos:

Tabela 2 - Caminhos e seus respectivos Comprimentos					
Caminho	Comprimento (semanas)				
Inicio-A-B-C-D-G-H-M-Fim	2+4+10+6+7+9+2 = 40				
Inicio-A-B-C-E-H-M-Fim	2+4+10+4+9+2 = 31				
Inicio-A-B-C-E-F-J-K-N-Fim	2+4+10+4+5+8+4+6=43				
Inicio-A-B-C-E-F-J-L-N-Fim	2+4+10+4+5+8+5+6=44				
Inicio-A-B-C-I-J-K-N-Fim	2+4+10+7+8+4+6 = 41				
Inicio-A-B-C-I-J-L-N-Fim	2+4+10+7+8+5+6 = 42				

O Caminho com **maior** Comprimento é o Caminho Crítico, uma vez que todos os demais Caminhos deverão alcançar o nó FIM antes do Caminho Crítico. Isto responde a questão 1) dada acima, ou seja, o tempo total requerido é 44 semanas para completar o projeto.

As atividades sobre este Caminho são as Atividades Críticas (Atividades Gargalos), ou seja, qualquer atraso em uma dessas atividades irá atrasar a duração de todo o projeto. Já as demais atividades se sofrerem algum atraso poderão ou não atrasar a duração de todo o projeto.

A figura 2 mostra o Caminho Crítico.

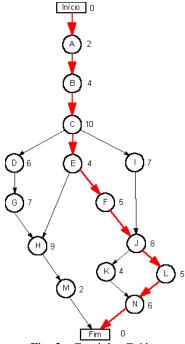


Fig. 2 - Caminho Crítico

2.2 Programação de Atividades (Scheduling)

A Programação das Atividades na técnica PERT/CPM consiste em determinar em que tempo (por exemplo, em que dia, em qual semana,...) uma atividade deve começar e terminar.

A princípio, o tempo inicial de uma atividade deveria ser igual ao tempo final da atividade precedente. No entanto, atividades que possuem 2 ou mais atividades precedentes necessitam que todas as atividades precedentes estejam completadas para então dar início a atividade em questão. Já para Atividades Não Críticas, o tempo inicial não precisa ser necessariamente igual ao tempo final da sua atividade precedente, uma vez que esta atividade possui folga (não pertence ao Caminho Crítico da Rede).

A fim de formalizar este raciocínio, a técnica PERT/CPM utiliza 4 variáveis que são:

ES = Tempo Inicial Mais Cedo (*Earliest Start*)

EF = Tempo Final Mais Cedo (*Earliest Finish*)

LS = Tempo Inicial Mais Tarde (*Last Start*)

LF = Tempo Final Mais Tarde (*Last Finish*)

De posse dessas variáveis as seguintes regras podem ser definidas:

Regra do Tempo Inicial Mais Cedo

O tempo Inicial Mais Cedo ES_i de uma atividade i é igual ao **maior** Tempo Final Mais Cedo EF_j das atividades precedentes j.

$$ES_{i} = \max_{j} (EF_{j}), \qquad j \in \pi_{i}$$
 (1)

onde:

 π_i é conjunto das atividades precedentes à atividade i.

Regra do Tempo Final Mais Cedo

$$EF_i = ES_i + D_i \tag{2}$$

onde:

D_i é a duração da atividade i.

Regra do Tempo Inicial Mais Tarde

$$LS_i = LF_i - D_i \tag{3}$$

onde:

LF_i como definido abaixo.

Regra do Tempo Final Mais Tarde

O tempo Final Mais Tarde LF_i de uma atividade i é igual ao **menor** Tempo Inical Mais Tarde LS_k das atividades sucessoras k.

$$LF_{i} = \min_{k} (LS_{k}), \qquad k \in \psi_{i}$$
 (4)

onde:

 ψ_i é conjunto das atividades sucessoras à atividade i.

Exemplo: Cálculo de ES, EF, LS e LF para a Atividade J (divisórias) da Rede da figura 1.

$$ES_{I} = max(EF_{F}, EF_{I}) = max(25,23) = 25$$
 (5)

$$EF_{I} = ES_{I} + D_{I} = 25 + 8 = 33 \tag{6}$$

$$LF_{J} = min(LS_{K}, LS_{L}) = min(34,33) = 33$$
 (7)

$$LS_I = LF_I - D_I = 33 - 8 = 25$$
 (8)

Como pode-se perceber, o cálculo do Tempo Inicial Mais Cedo ES é função dos Tempos Finais Mais Cedos EF precedentes, portanto, a sua obtenção é realizada calculando os ES's e EF's no sentido do nó Inicio para o nó Fim (*forward pass*). Já o cálculo do Tempo Final Mais Tarde LF é função dos Tempos Iniciais Mais Tardes LS sucessores, portanto, a sua obtenção é realizada calculando os LS's e LF's no sentido do nó Fim para o nó Início (*backward pass*).

Outra conclusão importante sobre este exemplo é que o Tempo Inicial Mais Cedo (ES_J) é igual ao Tempo Inicial Mais Tarde (LS_J) , no caso = 25. Isto nos diz que não há

folga para iniciar a Atividade J. Dá mesma forma o Tempo Final Mais Cedo (EF_J) é igual ao Tempo Final Mais Tarde (LF_J), no caso = 33. Isto nos diz que não há folga para terminar a Atividade J. Estas duas conclusões estão coerentes, uma vez que a Atividade J pertence ao Caminho Crítico da Rede.

Pode-se concluir ainda que LF - EF = LS - ES e que estas diferenças são iguais à folga que existe na atividade em questão. Assim, a folga S_i (Slack) para a atividade i é dada por:

$$S_i = LF_i - EF_i = LS_i - ES_i$$
 (9)

O valor da Folga S_i corresponde ao atraso que a atividade i pode sofrer sem comprometer a duração total determinada pelo comprimento do Caminho Crítico.

A figura abaixo mostra a Rede com todos os seus Tempos Iniciais e Finais Mais Cedos e Mais Tardes e Folgas (obs: a verificação dos cálculos deve ser realizada pelo leitor).

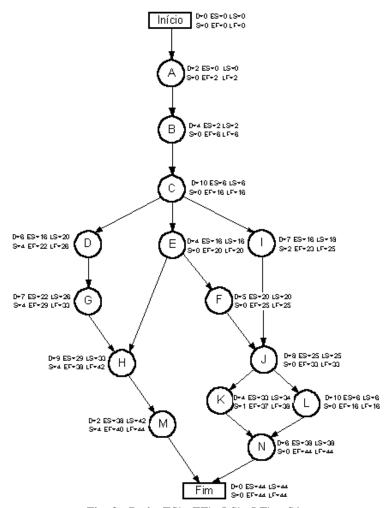


Fig. 3 - Rede, ES's, EF's, LS's, LF's e S's.

3. Incertezas nas Durações das Atividades - Metodologia PERT

A duração de cada atividade na prática pode ser diferente daquela prevista na elaboração do projeto. Existem muitos fatores praticamente impossíveis de serem previstos que podem adiantar ou atrasar a duração de uma atividade, como por exemplo, escassez ou abundância de recursos devido a variações abruptas de indicadores econômicos, intempéries climáticas, entre tantos outros.

A fim de se obter um planejamento mais confiável, faz-se necessário considerar no modelo incertezas sobre a duração de cada atividade. Na metodologia PERT, a duração de cada atividade é tratada como uma **variável randômica** com alguma distribuição de probabilidade.

A versão original da metodologia PERT utiliza 3 diferentes tipos de estimativas da duração de uma atividade para determinar os parâmetros da distribuição de probabilidade:

m = estimativa mais provável da duração de uma atividade (*most likely estimate*),

o = estimativa otimista da duração de uma atividade (optimistic estimate),

p = estimativa pessimista da duração de uma atividade (*pessimistic estimate*).

A metodologia PERT também assume que a forma da distribuição de probabilidade da variável randômica em questão é a da distribuição Beta. A figura abaixo mostra a localização das estimativas m, o e p na distribuição Beta para os parâmetros a e b da distribuição igual a 1.5 e 4, respectivamente. Atenção: a forma da distribuição pode ser bastante diferente da forma representada na figura 4, de acordo com os seus parâmetros.

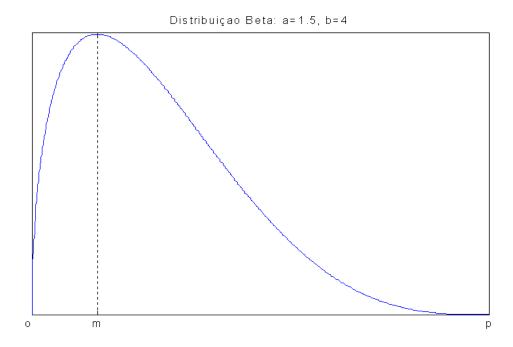


Fig. 4 - Distribuição Beta.

Considerando que a distribuição está efetivamente contida no intervalo $(\mu-3\sigma)$ e $(\mu+3\sigma)$, onde μ e σ são a média e o desvio-padrão, respectivamente, pode-se definir um boa aproximação para a média como:

$$\mu = \frac{o + 4m + p}{6} \tag{10}$$

$$\sigma^2 = \left(\frac{p - o}{6}\right)^2 \tag{11}$$

A tabela 3 mostra as 3 estimativas da metodologia PERT, bem como a média e a variância para cada atividade da tabela 1.

Tabela 3 - Estimativas PERT								
Atividade	0	m	р	Média	Variância			
A	1	2	3	2	1/9			
В	2	3.5	8	4	1			
C	6	9	18	10	4			
D	4	5.5	10	6	1			
E	1	4.5	5	4	4/9			
F	4	4	10	5	1			
G	5	6.5	11	7	1			
Н	5	8	17	9	4			
I	3	7.5	9	7	1			
J	3	9	9	8	1			
K	4	4	4	4	0			
L	1	5.5	7	5	1			
M	1	2	3	2	1/9			
N	5	5.5	9	6	4/9			

Com os valores da tabela 3, pode-se por exemplo, construir o **cenário** de pior caso, ou seja, determinar o Caminho Crítico utilizando as durações pessimistas. A tabela 4 mostra estes cálculos elaborados de maneira análoga aos da tabela 2.

Tabela 4 - Caminhos e seus respectivos Comprimentos para o Cenário Pior Caso					
Caminho	Comprimento (semanas)				
Inicio-A-B-C-D-G-H-M-Fim	3 + 8 + 18 + 10 + 11 + 17 + 3	= 70			
Inicio-A-B-C-E-H-M-Fim	3 + 8 + 18 + 5 + 17 + 3	= 54			
Inicio-A-B-C-E-F-J-K-N-Fim	3 + 8 + 18 + 5 + 10 + 9 + 4 + 9	= 66			
Inicio-A-B-C-E-F-J-L-N-Fim	3 + 8 + 18 + 5 + 10 + 9 + 7 + 9	= 69			
Inicio-A-B-C-I-J-K-N-Fim	3 + 8 + 18 + 9 + 9 + 4 + 9	= 60			
Inicio-A-B-C-I-J-L-N-Fim	3 + 8 + 18 + 9 + 9 + 7 + 9	= 63			

De acordo com a tabela 4, percebe-se que o Caminho Crítico para o Cenário Pior Caso é 70 semanas, o que provavelmente inviabilizaria o projeto. Porém, qual a probabilidade que este Cenário ocorra ?

Considerando que o **Caminho Crítico Médio** é o Caminho através da Rede que deveria ser o Caminho Crítico se a duração de cada atividade fosse a sua duração média e ainda que as atividades sobre o Caminho Crítico Médio são **estatisticamente independentes**, pode-se calcular a média da distribuição de probabilidade da duração total do projeto como:

$$\mu_{p} = \sum_{i=1}^{n} \mu_{i} \tag{12}$$

onde:

 μ_i é a duração média da atividade i sobre o Caminho Crítico Médio.

e a variância da distribuição de probabilidade da duração total do projeto como:

$$\sigma_p^2 = \sum_{i=1}^n \sigma_i^2 \tag{13}$$

onde:

 σ_{i}^{2} é a variância da atividade i sobre o Caminho Crítico Médio.

No exemplo, o Caminho Crítico Médio é Inicio-A-B-C-D-G-H-M-Fim, com $\mu_p=44$ e $\sigma^2_{\ p}=9.$

Assumindo ainda que a forma da distribuição de probabilidade para a duração total do projeto é igual à de uma distribuição **normal**, pode-se calcular a probabilidade de completar o projeto em d unidades de tempo. Considerando T como a duração do projeto que possui distribuição normal com média μ_p e σ^2_p , o número de desvios-padrão pelo que d excede μ_p é:

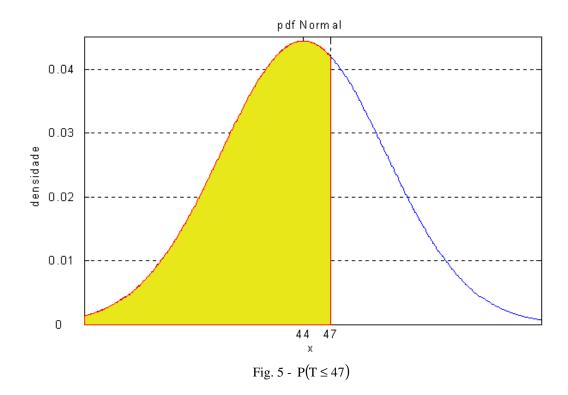
$$k_{\alpha} = \frac{d - \mu_{p}}{\sigma_{p}} \tag{14}$$

Portanto, utilizando uma tabela dos valores da distribuição normal padrão (média = 0 e variância = 1), a probabilidade de completar o projeto em d unidades de tempo é:

$$P(T \le d) = P(Z \le k_{\alpha}) = 1 - P(Z > k_{\alpha})$$

$$(15)$$

Exemplo


A probabilidade de completar o projeto em d = 47 semanas é:

$$k_{\alpha} = \frac{d - \mu_{p}}{\sigma_{p}} = \frac{47 - 44}{3} = 1 \tag{16}$$

e

$$P(T \le d) = P(Z \le k_{\alpha}) = 1 - P(Z > k_{\alpha}) = 1 - 0.1587 \approx 0.84$$
 (17)

Assim, a probabilidade de terminar o projeto em 47 semanas é de 0.84 (a área da figura 5 é aproximadamente 0.84).

Se d = 40, k_{α} = -4/3 e P(T \leq d) \approx 0.0918 (conforme a tabela da distribuição normal padrão, ver figura 6).

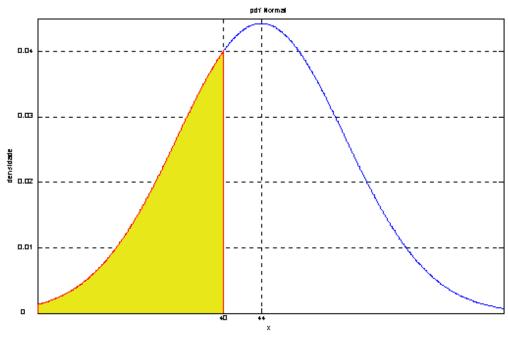


Fig. 6 - $P(T \le 40)$

Se d = 44, k_{α} = 0 e P(T \le d) = 0.5 (conforme a tabela da distribuição normal padrão).

4. Balanceando Tempo-Custo (Trade-offs)

De acordo com o contrato do projeto, existe um bônus de \$150.000,00 se o projeto for concluído em até 40 semanas. Conforme o gráfico da figura 6, a probabilidade de terminar o projeto em até 40 semanas é em torno de 0.09, o que pode ser considerado "pouco provável".

No entanto, uma ou mais atividades podem ser "intensificadas" (*Crashed*) a fim de diminuir a duração da execução do projeto. Faz-se necessário então analisar quais atividades devem ser intensificadas para diminuir a duração da execução do projeto e também qual o custo que tal "intensificação" ocasionará. Obviamente, se o custo da intensificação for menor que \$150.000,00 (valor do bônus do exemplo) esta deverá ser implementada.

A figura 7 mostra um gráfico onde a Relação Tempo-Custo é aproximada por função linear.

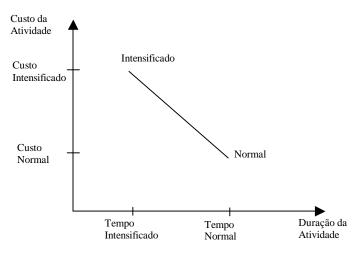


Fig. 7 - Gráfico típico da Relação Tempo-Custo.

Uma vez que uma função linear é totalmente definida por dois pontos (no caso Normal e Intensificado, como na figura 7) pode-se então determinar facilmente pontos intermediários (Tempos e Custos parcialmente Intensificados) apenas como função dos pontos extremos "Normal" e "Intensificado". Cabe ressaltar que uma função linear é apenas um modelo possível de ser utilizado, o que não necessariamente condiz com a realidade.

Por exemplo, a atividade J (divisórias) possui um Custo Normal de \$430.000,00 para ser executada em 8 semanas. No entanto, o responsável por essa atividade prevê que com trabalhadores adicionais e horas-extras pode reduzir a duração desta atividade para 6 semanas, que é o mínimo possível. Então, tem-se para a atividade J:

Condições Normais ⇒ duração = 8 semanas e custo = \$430.000,00

Condições Intensificadas ⇒ duração = 6 semanas e custo = \$490.000,00

Redução Máxima em Tempo = 2 semanas

Custo Intensificado por semana reduzida =
$$\frac{\$490.000,00 - \$430.000,00}{2} = \$30.000,00$$

A fim de decidir qual atividade deve ser intensificada, faz-se necessário a priori obter as Condições Normais e Intensificadas de todas as atividades. A tabela 5 traz estas informações.

Tabela 5 - Tempos e Custos Normais e Intensificados								
	Temp	o (semanas)	Cus	sto (\$)	Redução	Custo		
					Máxima	Intensificado por		
Atividade	Normal	Intensificada	Normal	Intensificada	em Tempo	semana reduzida		
A	2	1	180.000,00	280.000,00	1	100.000,00		
В	4	2	320.000,00	420.000,00	2	50.000,00		
С	10	7	620.000,00	860.000,00	3	80.000,00		
D	6	4	260.000,00	340.000,00	2	40.000,00		
Е	4	3	410.000,00	570.000,00	1	160.000,00		
F	5	3	180.000,00	260.000,00	2	40.000,00		
G	7	4	900.000,00	1.020.000,00	3	40.000,00		
Н	9	6	200.000,00	380.000,00	3	60.000,00		
I	7	5	210.000,00	270.000,00	2	30.000,00		
J	8	6	430.000,00	490.000,00	2	30.000,00		
K	4	3	160.000,00	200.000,00	1	40.000,00		
L	5	3	250.000,00	350.000,00	2	50.000,00		
M	2	1	100.000,00	200.000,00	1	100.000,00		
N	6	3	330.000,00	510.000,00	3	60.000,00		

A soma dos Custos Normais totaliza \$4.550.000,00 e a soma dos Custos Intensificados totaliza \$6.150.000,00. Uma vez que a empreiteira irá ganhar \$5.400.000,00 pela execução do projeto, intensificar totalmente todas as atividades é inviável.

Para a empreiteira somente será interessante intensificar uma ou mais atividades se o custo desta intensificação for menor que \$150.000,00, que é o bônus referente a entregar a obra em 40 semanas. Da mesma forma, para a empreiteira, a duração intensificada precisa ser igual ou menor que 40 semanas (para ganhar o bônus), no entanto, se a empreiteira concluir a obra em menos que 40 semanas não resultará em mais nenhum ganho extra. Portanto, o objetivo desse estudo é determinar se o custo para terminar o projeto em 40 semanas é menor que \$150.000,00.

Uma maneira de resolver este problema é através de **Análise de Custo Marginal**, que utiliza a última coluna da tabela 6 para determinar o Caminho mais barato para reduzir a duração do projeto em 1 semana.

Inicialmente, a única maneira de reduzir a duração do projeto em 1 semana é reduzir a duração de alguma Atividade Crítica, uma vez que estas atividades não possuem folgas. No entanto, reduzindo a duração de alguma Atividade Crítica pode resultar no surgimento de outro Caminho Crítico, pois alguma Atividade Não Crítica pode passar a ser Crítica. Assim, pode-se concluir que a redução de alguma atividade por uma unidade de tempo deve sempre ser realizada sobre as Atividades Críticas.

No exemplo dado, para reduzir a duração do projeto de 44 semanas para 43 semanas deve-se reduzir a duração de alguma Atividade Crítica por 1 semana. Obviamente, a Atividade Crítica a ser reduzida sua duração deve ser aquela que possui menor Custo Intensificado por semana. As atividades Críticas são:

A-B-C-E-F-J-L-N

Dentre estas atividades a que possui menor Custo Intensificado (\$30.000,00) é a atividade J. Reduzindo a duração da atividade J, o Caminho A-B-C-E-F-J-L-N passa a ter 43 semanas de comprimento. Esta redução aumentou o custo do projeto em \$30.000,00, passando de \$4.550.000,00 (Custo Normal) para \$4.580.000,00.

A tabela 6 mostra as atividades a serem intensificadas, onde cada linha representa reduzir a duração do projeto em uma semana. A primeira linha da tabela (sem Atividade Intensificada e Custo Intensificado) mostra os Comprimentos dos Caminhos para as Condições Normais (como a tabela 2). A segunda linha portanto, mostra que foi realizada uma redução de uma semana na atividade J. Esta redução, obviamente, afeta todos os Caminhos que contém a atividade J e não somente o Caminho Crítico. Para as demais linhas o raciocínio é análogo.

	Tabela 6 - Análise de Custo Marginal								
Atividade	Custo		Compri	mento do C	aminho (sen	nanas)			
Intensificada	Intensificado	ABCDGHM	ABCEHM	ABCEFJKN	ABCEFJLN	ABCIJKN	ABCIJLN		
		40	31	43	44	41	42		
J	\$30.000,00	40	31	42	43	40	41		
J	\$30.000,00	40	31	41	42	39	40		
F	\$40.000,00	40	31	40	41	39	40		
F	\$40.000,00	40	31	39	40	39	40		

Após a elaboração da tabela 6, observa-se que a redução da duração do projeto de 44 semanas para 40 semanas irá aumentar o custo do mesmo em \$140.000,00 (\$30.000,00 + \$30.000,00 + \$40.000,00 + \$40.000,00).

Sendo o bônus de \$150.000,00 e o Custo Intensificado de \$140.000,00, conclui-se que a Intensificação é viável, porém, um sobre-lucro de \$10.000,00 não é algo muito significativo quando comparado ao lucro (\$5.400.000,00 - \$4.550.000,00 = \$850.000,00) que a empreiteira irá obter executando o projeto nas Condições Normais apenas. Além deste fato, um pequeno atraso em uma atividade devido às incertezas existentes nas estimativas dos Tempos e dos Custos Normais e Intensificados pode resultar em uma duração maior de que 40 semanas (e com isso, perdendo o bônus).

5. Gráficos Típicos

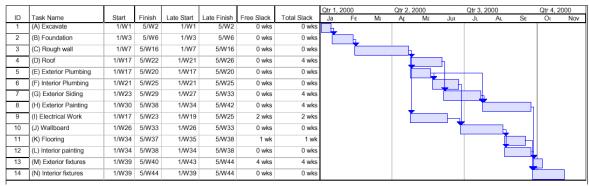


Fig. 8 - Diagrama de Gantt.

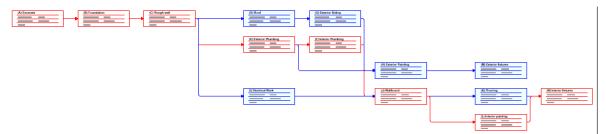


Fig. 9 - Diagrama da Rede (vermelho representa Atividades Críticas).

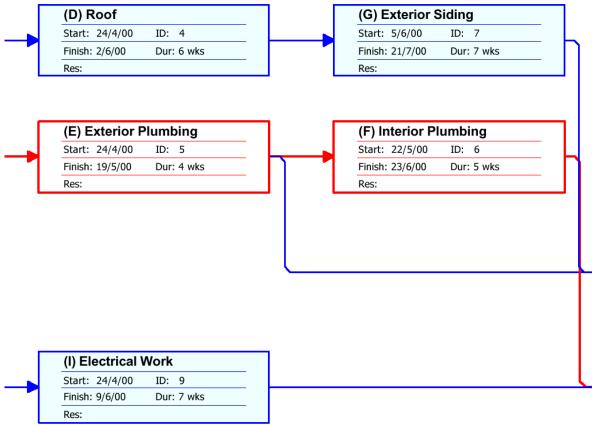


Fig. 10 - Detalhe ampliado do Diagrama da Rede da figura 9.

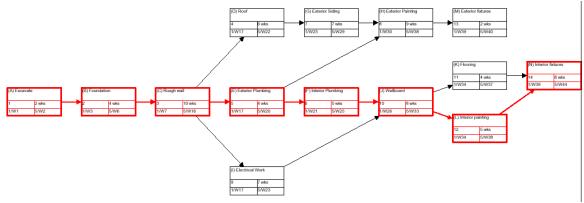


Fig. 11 - Diagrama PERT (vermelho representa Atividades Críticas).

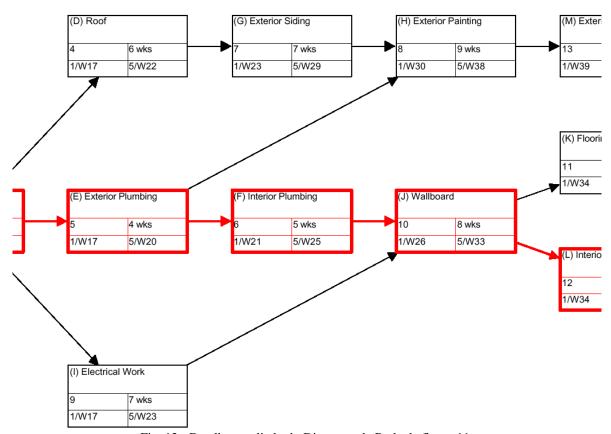


Fig. 12 - Detalhe ampliado do Diagrama da Rede da figura 11.

Apêndice

	Tabela A1 - Áreas sob a curva Normal Padrão a partir de K_{α} a ∞ .										
Κα	0	.01	.02	.03	.04	.05	.06	.07	.08	.09	
0.0	0,50000	0,49601	0,49202	0,48803	0,48405	0,48006	0,47608	0,47210	0,46812	0,46414	
0.1	0,46017	0,45620	0,45224	0,44828	0,44433	0,44038	0,43644	0,43251	0,42858	0,42465	
0.2	0,42074	0,41683	0,41294	0,40905	0,40517	0,40129	0,39743	0,39358	0,38974	0,38591	
0.3	0,38209	0,37828	0,37448	0,37070	0,36693	0,36317	0,35942	0,35569	0,35197	0,34827	
0.4	0,34458	0,34090	0,33724	0,33360	0,32997	0,32636	0,32276	0,31918	0,31561	0,31207	
0.5	0,30854	0,30503	0,30153	0,29806	0,29460	0,29116	0,28774	0,28434	0,28096	0,27760	
0.6	0,27425	0,27093	0,26763	0,26435	0,26109	0,25785	0,25463	0,25143	0,24825	0,24510	
0.7	0,24196	0,23885	0,23576	0,23270	0,22965	0,22663	0,22363	0,22065	0,21770	0,21476	
8.0	0,21186	0,20897	0,20611	0,20327	0,20045	0,19766	0,19489	0,19215	0,18943	0,18673	
0.9	0,18406	0,18141	0,17879	0,17619	0,17361	0,17106	0,16853	0,16602	0,16354	0,16109	
1.0	0,15866	0,15625	0,15386	0,15151	0,14917	0,14686	0,14457	0,14231	0,14007	0,13786	
1.1	0,13567	0,13350	0,13136	0,12924	0,12714	0,12507	0,12302	0,12100	0,11900	0,11702	
1.2	0,11507	0,11314	0,11123	0,10935	0,10749	0,10565	0,10383	0,10204	0,10027	0,09853	
1.3	0,09680	0,09510	0,09342	0,09176	0,09012	0,08851	0,08692	0,08534	0,08379	0,08226	
1.4	0,08076	0,07927	0,07780	0,07636	0,07493	0,07353	0,07215	0,07078	0,06944	0,06811	
1.5	0,06681	0,06552	0,06426	0,06301	0,06178	0,06057	0,05938	0,05821	0,05705	0,05592	
1.6	0,05480	0,05370	0,05262	0,05155	0,05050	0,04947	0,04846	0,04746	0,04648	0,04551	
1.7	0,04457	0,04363	0,04272	0,04182	0,04093	0,04006	0,03920	0,03836	0,03754	0,03673	
1.8	0,03593	0,03515	0,03438	0,03362	0,03288	0,03216	0,03144	0,03074	0,03005	0,02938	
1.9	0,02872	0,02807	0,02743	0,02680	0,02619	0,02559	0,02500	0,02442	0,02385	0,02330	
2	0,02275	0,02222	0,02169	0,02118	0,02068	0,02018	0,01970	0,01923	0,01876	0,01831	
2.1	0,01786	0,01743	0,01700	0,01659	0,01618	0,01578	0,01539	0,01500	0,01463	0,01426	
2.2	0,01390	0,01355	0,01321	0,01287	0,01255	0,01222	0,01191	0,01160	0,01130	0,01101	
2.3	0,01072	0,01044	0,01017	0,00990	0,00964	0,00939	0,00914	0,00889	0,00866	0,00842	
2.4	0,00820	0,00798	0,00776	0,00755	0,00734	0,00714	0,00695	0,00676	0,00657	0,00639	
2.5	0,00621	0,00604	0,00587	0,00570	0,00554	0,00539	0,00523	0,00508	0,00494	0,00480	
2.6	0,00466	0,00453	0,00440	0,00427	0,00415	0,00402	0,00391	0,00379	0,00368	0,00357	
2.7	0,00347	0,00336	0,00326	0,00317	0,00307	0,00298	0,00289	0,00280	0,00272	0,00264	
2.8	0,00256	0,00248	0,00240	0,00233	0,00226	0,00219	0,00212	0,00205	0,00199	0,00193	
2.9	0,00187	0,00181	0,00175	0,00169	0,00164	0,00159	0,00154	0,00149	0,00144	0,00139	
3.0	0,00135	0,00131	0,00126	0,00122	0,00118	0,00114	0,00111	0,00107	0,00104	0,00100	
	3,17E-	3,04E-	2,91E-	2,79E-	2,67E-	2,56E-	2,45E-	2,35E-	2,25E-	2,16E-	
4.0	05	05	05	05	05	05	05	05	05	05	
	2,87E-	2,73E-	2,59E-	2,46E-	2,33E-	2,21E-		1,99E-	1,89E-	1,79E-	
5.0	07	07	07	07	07	07	2,1E-07	07	07	07	
	0.05 :=	9,31E-	8,75E-	8,23E-	7,73E-	7,27E-	6,83E-	6,42E-	6,03E-	5,67E-	
6.0	9,9E-10	10	10	10	10	10	10	10	10	10	

FONTE: Hiller & Lieberman, CAP. 10.

Exercícios - PERT/CPM

1) Uma companhia está pronta para começar a desenvolver um projeto. O prazo para entrega do projeto é de 100 semanas. O projeto envolve 10 atividades com as seguintes relações de precedência e previsões de duração (em semanas):

Atividade	Precedência	Duração Otimista	Duração Mais Provável	Duração Pessimista
Start		0	0	0
A	Start	28	32	36
В	Start	22	28	32
С	A	26	36	46
D	В	14	16	18
Е	В	32	32	32
F	В	40	52	74
G	D	12	16	24
Н	E,G	16	20	26
Ι	G,E	26	34	42
J	C,F	12	16	30
FINISH	H,I,J	0	0	0

- a) Encontre a estimativa de média e variância da duração de cada atividade.
- b) Encontre o Caminho Crítico Médio.
- c) Encontre a probabilidade aproximada que o projeto irá terminar em até 100 semanas.
- d) Encontre a probabilidade aproximada que o projeto irá terminar em até 80 semanas
- e) Encontre a probabilidade aproximada que o projeto irá terminar em até 120 semanas.
- f) Calcule o Tempo Inicial Mais Cedo, Tempo Inicial Mais Tarde, Tempo Final Mais Cedo e Tempo Final Mais Tarde considerando a estimativa de média da duração de cada atividade.
- g) Qual a duração total do projeto para o pior caso (pior cenário).
- 2) Uma companhia está pronta para começar um projeto que precisa ser completado em 12 meses. No entanto, para conseguir terminar a execução do projeto em até 12 meses, algumas atividades devem ser intensificadas. Determine a maneira mais econômica de concluir o projeto em até 12 meses, de acordo com os dados abaixo:

Atividade	Precedência	Tempo Tempo		Custo	Custo
		Normal	Intensificado	Normal	Intensificado
Start		0	0	0	0
A	Start	8	5	25000,00	40000,00
В	Start	9	7	20000,00	30000,00
С	A	6	4	16000,00	24000,00
D	В	7	4	27000,00	45000,00
Finish	C,D	0	0	0	0

Respostas

1.a)

Atividade	média	variância
Start	0,00	0,00
A	32,00	1,78
В	27,67	2,78
C	36,00	11,11
D	16,00	0,44
E	32,00	0,00
F	53,67	32,11
G	16,67	4,00
H	20,33	2,78
Ι	34,00	7,11
J	17,67	9,00
FINISH	0,00	0,00

1.b) Start - B - F - J - Finish.
$$\mu_p$$
 = 99 $\,e\,\,\sigma_p^2$ = 43.89 , $\,\sigma_p$ = 6.62

1.c)
$$K_{\alpha} = \frac{100 - 99}{6.62} = 0.1511$$

A probabilidade de terminar o projeto em 100 semanas é de aproximadamente 0.56.

1.d)
$$K_{\alpha} = \frac{80 - 99}{6.62} = -2.870$$

A probabilidade de terminar o projeto em 80 semanas é de aproximadamente 0.002.

1.e)
$$K_{\alpha} = \frac{120 - 99}{6.62} = 3.1722$$

A probabilidade de terminar o projeto em 120 semanas é de aproximadamente 1.0.

1.f)

atividade	duração média	ES	EF	LS	LF	folga
Start	0,00	0	0	0	0	0
A	32,00	0	32,00	13,34	45,34	13,34
В	27,67	0	27,67	0	27,67	0
С	36,00	32,00	68,00	45,34	81,34	13,34
D	16,00	27,67	43,67	32,34	48,34	4,67
E	32,00	27,67	59,67	33,01	65,01	5,34
F	53,67	27,67	81,34	27,67	81,34	0
G	16,67	43,67	60,34	48,34	65,01	4,67
H	20,33	60,34	80,67	78,68	99,01	18,34
I	34,00	60,34	94,34	65,01	99,01	4,67
J	17,67	81,34	99,01	81,34	99,01	0
FINISH	0,00	99,01	99,01	99,01	99,01	0

1.g) A duração é 136.

2)

	Tempo (meses)		Custo (\$)		Redução	Custo
					Máxima	Intensificado por
Atividade	Normal	Intensificada	Normal	Intensificada	em Tempo	semana reduzida
A	8	5	25.000,00	40.000,00	3	5.000,00
В	9	7	20.000,00	30.000,00	2	5.000,00
С	6	4	16.000,00	24.000,00	2	4.000,00
D	7	4	27.000,00	45.000,00	3	6.000,00

Caminho Crítico = Start-B-D-Finish = 16 meses.

Atividade Intensificada	Custo Intensificado	Start-A-C-Finish	Start-B-D-Finish
В	5.000,00	14	15
В	5.000,00	14	14
С	4.000,00	13	14
D	6.000,00	13	13
С	4.000,00	12	13
D	6.000,00	12	12
	TOTAL = 30.000,00		

Plano Ótimo:

Reduzir 2 meses a atividade B, reduzir 2 meses a atividade C e reduzir 2 meses a atividade D.